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ABSTRACT 
Recent studies show that as the depth of Convolution Neural Net-

works (CNNs) increases for higher performance in different ma-

chine learning tasks, a major bottleneck in the improvement of 

deep CNNs (DCNNs) processing is the traffic between the accel-

erator and off-chip memory. However, current state-of-the-art ac-

celerators cannot effectively reduce off-chip feature map traffic 

due to the limited capability in reusing output feature maps from 

the previous CNN layer to the next. In this paper, we propose a 

flexible on-chip memory architecture with a memory bank man-

agement scheme to reduce feature map data movement during the 

computational transition between CNN layers. Moreover, the pro-

posed scheme can also be used as a complementing approach to 

existing CNN dataflows to further improve the energy efficiency 

of DCNN accelerators. Experiment results show that the proposed 

scheme can reduce the off-chip feature map traffic of ResNet-152 

and VGGNet-E by 40% and 50% in 32-bit floating point and 16-

bit fixed-point arithmetic, respectively, on Xilinx Virtex FPGAs.      

 

1 INTRODUCTION 
 To achieve higher accuracy, current deep convolution neural 

networks (DCNNs) employ many CNN layers, with some exceed-

ing a thousand layers [1]. However, DCNNs become very compu-

tation and memory intensive as they evolve to deeper structures. 

This rapidly increased demand on computation and memory re-

sources has caused conventional CPUs to be a bottleneck in pro-

cessing DCNNs during both training and inference [2]. Alterna-

tively, while GPUs have also been used to process DCNNs by 

exploring their massive parallelism, the large power consumption 

of GPUs has limited their extensive uses in data-center applica-

tions and embedded systems where power is critical. Meanwhile, 

FPGAs as reconfigurable computing platforms are able to provide 

an energy-efficient and massively parallel processing capability at 

the same time, thus surging as an attractive candidate for energy-

efficient DCNNs acceleration in recent years. 

The state-of-the-art FPGA-based accelerators process DCNNs 

layer by layer [2-7], but they all suffer from a problem which we 

refer to as the static bank assignment problem. That is, the as-

signment of banks to the input feature map (IFM) buffer and out-

put feature map (OFM) buffer are statically determined at the de-

sign time and cannot be changed after implementation. This static 

bank assignment forces accelerators to write back on-chip OFMs 

during the transition from processing one layer to the next. This 

policy makes sense previously where the size of OFM buffer was 

small and there were negligible performance and energy benefits 

in the reusing the data in OFM buffer due to the small size of on-

chip memory on FPGA chips. However, modern FPGAs typically 

contain a considerable amount of on-chip memory, e.g., the Xilinx 

Virtex UlteraScale+ FPGAs have up to 56.81MB on-chip memory 

organized as BRAMs and URAMs [8]. Moreover, as DCNNs 

evolve to deeper structures, the contribution of feature map data 

movement across layers shows an increasing trend [9]. Conse-

quently, the static bank assignment policy leads to a poor utiliza-

tion of on-chip memory and squanders the opportunity in reusing 

OFMs as the IFMs for the next layer.  

Nevertheless, reusing OFMs for the next layer processing fac-

es several major implementation challenges including how to keep 

track of individual memory banks as each bank is used in both 

input and output buffer to reuse OFMs. Therefore, the current ar-

chitecture and management of the on-chip memory sub-system in 

FPGA-based DCNN accelerators need to be redesigned for a more 

efficient utilization of the large on-chip memory in modern 

FPGAs.  

To address the limitation of static bank assignment and enable 

efficient OFM reuse, in this paper, we propose a flexible on-chip 

memory architecture with a memory bank management scheme to 

maximize OFM reuse during the computational transition between 

two consecutive CNN layers. The proposed flexible memory sub-

system can be used in existing CNN dataflows to improve their 

ability in reducing off-chip traffic. Experiment results show that 

the proposed architecture is able to reduce the feature map traffic 

by 40% for a deep network ResNet-152 in 32-bit floating point on 

Xilinx VU13P FPGAs, and reduce the traffic by 50% in a more 

compact 16-bit fixed-point data type on Xilinx VU9P FPGA.  

The rest of this paper is organized as follows. Section 2 pro-

vides more background on the architecture of state-of-the-art 

FPGA-based DCNN accelerators. Section 3 discusses the motiva-

tion for this work. In Section 4, we describe the proposed memory 

sub-system architecture, its management scheme, and the imple-

mentation in detail. Evaluation results and analysis are presented 

in Section 5. Finally, related work is summarized in Section 6, and 

Section 7 concludes this paper.   

 

2 MODERN DCNN ACCELERATORS 
The original core of the state-of-the-art DCNN accelerators is 

a processing fabric based on the spatial architecture [10]. A 

DCNN accelerator based on the spatial architecture can be broken 

down into two main components: an array of processing elements 

(PEs) and on-chip buffers [10]. The PE array is responsible for 

carrying out the computation of CNN layers. The on-chip buffers 

cache the required data during the acceleration. The PE array and 

the on-chip buffers are connected via a simple network-on-chip. 

The granularity of PEs can vary from a simple multiplier and 

adder (fine-grained) to a vector-dot-product (coarse-grained). The 

state-of-the-art FPGA-based DCNN accelerators such as [2, 4, 6, 

9] use a convolution layer processor (CLP) to evaluate the CNN 

layers sequentially [2]. Fig. 1 shows the datapath of a convolution 

layer processor. The PE array fetches Tn IFM pixels from the in-

put buffer, 𝑇𝑛 × 𝑇𝑚weights from the weight buffer and Tm OFM 

partial sums (psum) from the output buffer, and then calculates Tm 

OFM psums or pixels simultaneously. We define the Tn and Tm in 

more detail later in subsection 2.2.  

2.1 CNN Dataflow 

 CNN dataflows can generally be classified into two catego-

ries. The first category of CNN dataflows controls the accelerator 

to evaluate a CNN in a layer-by-layer fashion based on the net-



  

 

 

work’s natural structure. This category of dataflows (single-layer 

dataflows) assumes that at the beginning of each CNN layer pro-

cessing, the input feature maps are stored in the off-chip memory. 

Then, after finishing processing the CNN layer, the computed 

output feature maps are written back into the off-chip memory. 

This assumption causes a great number of feature maps being 

written/read back and forth between the off-chip memory and the 

accelerator during the CNN processing. Examples of dataflows in 

the first category are reported in [6, 10, 11, 12].  

The second category of CNN dataflows focuses on the data 

movement between CNN layers rather than the data movement in 

a single CNN layer. To our knowledge, only one dataflow report-

ed in [9] (fused-CNN dataflow) is in this latter category. This 

dataflow fuses the computation of several CNN layers together to 

eliminate the off-chip memory traffic (for the fused layers only) 

by avoiding fetching the intermediate feature maps. The fused-

CNN dataflow is most effective for the first few CNN layers 

where feature maps have large grids (dimensions) requiring extra 

on-chip storage or re-computing energy. Applying this dataflow 

results in the cascading of multiple CLPs in the pipeline fashion. 

Once a CLP computes a CNN layer instead of writing back the 

computed OFM pixels, the pixels are used by the next CLP in the 

pipeline to eliminate the off-chip memory traffic due to the write-

back of the intermediate feature maps. The problem with this ap-

proach, however, is that the power efficient fusion of multiple 

CNN layers costs prohibitive on-chip storage. For a given FPGA 

with certain on-chip memory budget, only very few layers can be 

fused (e.g., 5 layers). In the shallow networks, such as AlexNet 

and VGGNets with a maximum number of sixteen CNN layers, 

because the first few CNN layers of the network have the largest 

feature map traffic in the network, only the first few CNN layers 

of these shallow networks need to be fused together to reduce fea-

ture map traffic. However, modern DCNNs have a large number 

of layers (easily exceeding hundreds), and the feature map traffic 

is distributed across the network rather than on the first few CNN 

layers. Thus, the effectiveness of this approach is very limited. 

 
Fig. 1: Convolution layer processor (CLP) datapath. 

2.2 Tiling 

The tiling technique is often used on feature maps to reduce 

the requirement for on-chip memory [5]. Each feature map is tiled 

by a factor of Tr and Tc in the row and the column, respectively. 

Also, Tn is the tiling factor on the N IFMs, and Tm is the tiling fac-

tor on M OFMs. Fig. 2a shows the tiling of feature maps of a con-

volutional layer in a CLP. Based on the available computational 

resources of the target FPGA and the dimensions of the CNN lay-

er, the optimal values for Tn and Tm can be found for the minimal 

execution cycles. However, the optimal values for these parame-

ters (Tn, Tm) can be different for different CNN layers. As de-

scribed in [6], the global optimal values of Tn and Tm for the max-

imum performance can be selected by enumerating of all possible 

combinations of Tn and Tm. The optimal values of Tn and Tm 

across all CNN layers are called cross-layer unroll factors. Fig. 2b 

shows an example pseudo code of the tiling technique in the CLP. 

The main modules are the Load_IFM_Tile, Load_Weight, Conv 

and Store_OFM_Tile. The Load and Store modules interact with 

external memory. “DATAFLOW” directive applies the ping-pong 

operation to overlap the computation and the communication la-

tency, as explained in the next sub-section. We define the direc-

tion of processing as the counting direction of r, c, m, and n loops 

in Fig. 2b, e.g., up-counting signifies an increasing value of the 

counting variable when processing (like Fig 2b). Therefore, if for 

a given layer i the direction of processing is up-counting, revers-

ing the direction of processing for the next layer means that layer 

i+1 is processed in the down-counting direction. 

 
Fig. 2a: Tiling of feature maps of a CNN layer in CLP.  

   
1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

for (r =0; r<R; r+= Tr) 

    for(c =0; c<C; c+= Tc) 

        for (m =0; m<M; m+= Tm)  

            for (n =0; n<N; n+= Tn) 

#pragma DATAFLOW { 

    Load_IFM_Tile(n,r,c); 

    Load_Weights (n,m); 

    Conv(); 

    Store_OFM_Tile(m,r,c); } 

Fig. 2b: Pseudo code example for tiling technique in CLP. 

2.3 On-chip Memory Sub-System 

The on-chip memory sub-system is a vital part of DCNN ac-

celerators and has a considerable impact on the performance and 

energy of CNN accelerators [11]. The CLP organizes its on-chip 

memory as double input and output buffers in the ping-pong man-

ner, so as to hide the communication latency of the off-chip 

memory by overlapping loading/storing time with computation 

time [2, 4, 6, 9]. As shown in Fig. 2a, the input and output buffers 

that are used by the PEs during convolutional layer processing are 

active input and output buffers; whereas the other set of input and 

output buffers that are used by the data transfer manager for pre-

loading and storing are inactive buffers. 

The on-chip memory of FPGA-based DCNN accelerators is 

organized as a banked memory rather than a unified memory [11] 

(as well as all the current state-of-the-art designs [2, 4, 6]), be-

cause the banked memory organization provides multiple simulta-

neous accesses to IFM pixels, weights, and partial sums (interme-

diate results). The IFM, OFM, and weight buffers (both active and 

inactive) of the CLP are implemented as 2 × 𝑇𝑛 , 2 × 𝑇𝑚,  and 

2 × (𝑇𝑛 × 𝑇𝑚)independent memory banks, respectively. It means 

that in every cycle, the CLP can read 𝑇𝑛 pixels from the input fea-

ture map buffer and write 𝑇𝑚 pixels (or partial sums) into the out-

put feature maps buffer (see Fig. 1). Meanwhile, the accelerator 

can load IFMs from the off-chip memory into 𝑇𝑛  inactive input 

banks, and it can store OFMs from 𝑇𝑚 inactive output banks into 

the off-chip memory to hide the off-chip memory latency. Each 

input buffer bank has the size of [𝑆 × 𝑇𝑟 + 𝐾 − 𝑆] × [𝑆 × 𝑇𝑐 +
𝐾 − 𝑆]  words. Where, K and S are the size of the kernel and 

stride, respectively. Also, the size of each output and weight buff-

er bank is 𝑇𝑟 × 𝑇𝑐 and 𝐾 × 𝐾 words, respectively [2, 4]. Different 

layers may have different parameters in a DCNN. Therefore, each 
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input, output and weight buffer bank should be sized properly to 

support all layers [4]. 

The modern FPGAs may have enough on-chip memory to ac-

commodate a considerable portion of a CNN layer or, in some 

cases, the entire CNN layer. Table 1 shows the available on-chip 

memory in modern Xilinx FPGAs. FPGAs from the Virtex Ul-

traScale+ family can have an on-chip memory up to 56.81MB 

(45MB UltraRAM+11.81 BRAMs). In comparison, the four larg-

est CNN layers in ResNet with 151 CNN layers (ResNet-152) re-

quired 9.19MB, 6.95MB, 3.7MB, and 2.27MB in 32-bit floating 

point data type. Thus, it can be seen from Table 1 that a modern 

FPGA such as an FPGA from the Xilinx Virtex UlteraScale+ fam-

ily can store each of these four largest CNN layers of ResNet-152 

on-chip.  

Table 1: On-chip memory in modern Xilinx FPGAs 
Xilinx FPGA Family [8]  On-Chip Memory 

Block Memory(MB) UltraRAM(MB) 

Virtex UltraScale+ 3.16 – 11.81 11.25 – 45 

Kintex UltraScale+ 1.59 – 4.32 4.5 

 

3 MOTIVATIONS AND CHALLENGES 
As CNNs evolve to the deeper structures, the off-chip feature 

map traffic increases rapidly [9]. Our goal is to reuse the on-chip 

OFMs at the end of each CNN layer processing as part of the 

IFMs for the next layer to reduce the off-chip feature map traffic. 

The key motivation behind the on-chip OFMs reuse is that a mod-

ern FPGA has a large amount of on-chip memory and reusing the 

large amount of on-chip OFMs can provide a unique opportunity 

to reduce the off-chip feature map traffic. However, the OFMs 

reuse faces the following challenges in the start-of-the-art FPGA-

based CNN accelerators. 

Static Memory Bank Assignment. As explained previously, 

the on-chip memory sub-system of the CLP includes two sets of 

input buffer (which includes the weights buffer) and output buffer 

to support the ping-pong operation for overlapping the computa-

tion with the communication. While the input and the output sets 

change their status between the active and the inactive modes dy-

namically, the type of the sets is static and this assignment is per-

formed during the design time. This means that the memory banks 

in the input buffer are always used at the input of the PEs and 

memory banks in the output buffer always are used at the output 

of the PEs. This kind of the static bank assignment limits the reuse 

opportunity of the OFMs of the current layer as the IFMs for next 

layer processing. The static assignment forces the CLP with a sin-

gle-layer dataflow to write back the OFMs during the processing 

transition from one layer to the next layer. Even when multi-CLP 

are cascaded in the pipeline manner to implement the fused-CNN 

dataflow, the accelerator still suffers from the static memory bank 

assignment problem. This is because, when the accelerator finish-

es the computation of the fused CNN layers, the OFMs of the last 

fused layer must be stored into the DRAM by the accelerator [9]. 

That is, the first layer’s input feature maps (the starting point of 

the fusion) are loaded into the on-chip memory and after the fu-

sion evaluation, the last fused layer’s output feature maps (the 

stopping point of the fusion) in the output buffer are written back 

to the DRAM [9]. 

OFM Reuse Challenges. There are two major challenges in 

the on-chip OFMs reuse implementation: 

1)-Padding around the OFMs: In order to reuse layer i's OFMs 

(which are on-chip) as the IFMs of the layer i+1, a padding should 

be performed around the OFMs, to prepare them for further pro-

cessing. Depending on the position of the remaining tile of OFMs 

(the upper left corner or the lower right corner) in the output buff-

er at the end of layer i processing, different areas of the OFMs 

should be padded to make the OFMs ready for reusing in the layer 

i+1 as is illustrated in Fig. 3a. However, performing the padding 

on the on-chip OFMs can cause the position of the pixels in the 

output buffer banks changes. Fig. 3b illustrates an example of the 

pixel relocation issue where padding is performed on a 3×3 OFM, 

with kernel size of 3 and stride of 1. The relocation of the on-chip 

OFM pixels causes on-chip data movement and energy consump-

tion. The situation becomes worse in the modern FPGAs with a 

large on-chip memory where a considerable amount of OFMs can 

be reused. Therefore, the computed OFM pixels should be written 

in the locations of the output buffer where performing the padding 

doesn’t need any further pixel relocation. 

2)-Memory Bank Tracking: State-of-the-art implementations of 

the CLP use High-Level Synthesis (HLS) [2, 4, 6, 9]. For exam-

ple, the most recent implementation of the CLP uses C++ HLS. 

The “DATAFLOW” directive is used for implementing the ping-

pong operation [2]. If a flexible on-chip memory is employed to 

solve the static memory bank assignment problem, each bank 

needs to have the ability to be used as an active input bank, an 

inactive input bank, an active output bank, or an inactive output 

bank. For efficient reuse of on-chip OFMs, the CLP should be 

able to keep track of individual banks during the ping-pong opera-

tion. Consequently, in the implementation of the CLP with the 

flexible on-chip memory instead of relying on the “DATAFLOW” 

directive for the ping-pong operation, a new tracking scheme of 

individual memory banks should be used.  

 
Fig. 3: Padding on the OFMs for reusing. 

4 FLEXIBLE ON-CHIP MEMORY 
The static memory bank assignment limits the OFM reuse 

during the computational transition between adjacent layers. To 

address this limitation in the CLP, we proposed a flexible on-chip 

memory architecture as shown in Fig. 4. In the proposed design, 

each memory bank can be used either as an input bank or an out-

put bank by the CLP during the CNN layer processing. This facili-

tates the on-chip OFM reuse for the next layer processing without 

additional on-chip data movement. As each bank is used to store a 

tile of an IFM or a tile of an OFM, the size of a bank should be 

large enough to support the storage requirements across the CNN 

layers. This means that the size of each bank should be [𝑆 × 𝑇𝑟 +
𝐾 − 𝑆] × [𝑆 × 𝑇𝑐 + 𝐾 − 𝑆] words and the 𝑇𝑟, 𝑇𝑐, 𝑆, and 𝐾 should 

be set to provide enough space for the CNN layer that needs the 

largest on-chip memory. Note that the proposed on-chip memory 

architecture can be configured to work with different on-chip 

memory sizes. This is because the row and the column tiling fac-

tors (𝑇𝑟,𝑇𝑐) can be adjusted separately in the flexible memory ar-

chitecture for any given memory size constraint. For example, 𝑇𝑟, 

and 𝑇𝑐 can be selected to use the same amount of on-chip memory 

that is used for the baseline memory sub-system. In order to keep 
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track of the status of each individual bank, the flexible memory 

sub-system holds four arrays for active input banks (with 𝑇𝑛 en-

tries), inactive input banks (with 𝑇𝑛 entries), active output banks 

(with 𝑇𝑚 entries), inactive output banks (with 𝑇𝑚 entries). We call 

these arrays as bank tracking arrays. Each element of the arrays 

stores the index of a memory bank. For example, the array for the 

active input banks has 𝑇𝑛 entries and this array stores the index of 

all the banks that can be used as the active input banks. This data 

structure allows the implementation of a tracking scheme to track 

individual banks during the ping-pong operation.      

4.1  On-chip Memory Bank Management 

To reduce off-chip feature map traffic and increase on-chip 

buffers utilization, we develop an on-chip memory bank manage-

ment scheme for the proposed flexible on-chip memory architec-

ture. This scheme is based on maximizing the feature map reuse 

during the computational transition from one CNN layer to the 

next CNN layer. In the following, to keep the generality of the 

proposed approach, we assume that the active output buffers con-

tain 𝑇𝑚 tiles of OFMs at the end of each CNN layer processing, 

and each output tile contains 𝑇𝑟 × 𝑇𝑐 OFM pixels (see Figure 2). 

However, in practice, depending on the FPGA chip, it is possible 

to hold an entire OFM on-chip. Our experiment results on differ-

ent DCNNs and FPGAs show that the optimal value of the cross-

layer unroll factor 𝑇𝑚 is greater than 𝑇𝑛. The current implementa-

tions of the CLP including [2, 6] also confirm this observation. 

 
Fig. 4: CLP datapath based on the flexible on-chip memory. 

After finishing the current convolutional layer under pro-

cessing (layer i), the active output buffer contains 𝑇𝑚 tiles of the 

OFMs. In the proposed approach, instead of writing these 𝑇𝑚 tiles 

of the OFMs back into the off-chip memory and reading them 

again, these on-chip tiles can be used for the next layer processing 

(layer i+1) as the IFMs as shown in Fig. 5a. By reversing the di-

rection of processing and switching between input and output 

buffers during the layer i+1’s evaluation alternatively, the CLP 

can reuse the 𝑇𝑚 tiles of the layer i’s OFMs as the IFMs for the 

layer i+1 (see Fig. 5a). Since during the layer i+1 processing the 

CLP reuses the feature maps of the layer i, there is no need to load 

the feature maps from the off-chip memory. Therefore, the CLP 

does not use the inactive buffers to hide the off-chip memory la-

tency. Instead, the accelerator preserves the OFMs from the pre-

vious layer (layer i) in the inactive output buffer for the future us-

es in the layer i+1 processing (referred to as the inactive output 

banks which preserve OFMs from the previous layer as inactive 

reserved banks). After consuming all the on-chip OFMs, the ac-

celerator should access the off-chip memory for the continuation 

of the layer i+1 processing. In this scenario, the accelerator always 

skips the loading 𝑇𝑚 tiles of the layer i+1’s IFMs and if 𝑀𝑖+1 ≤
𝑇𝑚it can also skips the writing of 𝑇𝑚 tiles of the layer i's OFMs. 

 
Fig. 5: Illustration of reusing the OFMs of layer i as IFMs of 

layer i+1 at the memory bank level. 

Fig. 5b illustrates an example of using the proposed memory 

bank management scheme in a CLP based on the flexible on-chip 

memory. For simplicity, we assume that each memory bank of the 

CLP can store a complete feature map (which is highly practical 

in modern FPGAs). Note that each bank of the CLP can be im-

plemented by several BRAMs or UltraRAMs. In this example, we 

assume 2 and 4 values for 𝑇𝑛 and 𝑇𝑚, respectively. Also, layer i+1 

has eight IFMs (N=8) and four OFMs (M=4). Therefore, at the 

end of layer i processing four OFMs (in general 𝑇𝑚 OFMs) of this 

layer remain on-chip which they can be reused as the IFMs for 

layer i+1 (𝑀𝑖 = 𝑁𝑖+1). The rest IFMs (in this example four IFMs) 

to complete the processing of layer i+1 are already computed dur-

ing the processing of layer i but are currently stored in the off-chip 

memory. The following steps explain the reuse of on-chip OFMs 

of layer i as well as pre-loading the rest of IFMs for the next CNN 

layer i+1 processing. 1) At the end of the layer i processing, the 

CLP reverses the processing direction. In this example, the direc-

tion of processing changes from up-counting to down-counting. 2) 

The CLP keeps the OFMs of layer i on-chip for reusing as IFMs 

in the layer i+1 processing by switching the status of the active 

output banks to the inactive output banks (Label 1 in Fig. 5b). 3) 

The CLP exchanges 𝑇𝑛 active input banks with 𝑇𝑛 inactive output 

banks (reserved banks) which contain IFMs (Label 2 in Fig.5b, 

here 𝑇𝑛 is 2). The exchange is done through index array manipula-

tion rather than moving data across banks physically. 4) After the 

exchange, computation can be started by the PE array (Label 3 in 

Fig. 5b). 4) Again, the CLP exchanges 𝑇𝑛 active input banks with 

the rest 𝑇𝑛 inactive output banks which contain another 𝑇𝑛 IFMs. 

5) After the exchange, computation can be continued by the PE 

array. At this point, all the 𝑇𝑚OFMs which are remained on-chip 

at the end of layer i processing are reused as the IFMs for layer 

i+1 processing by the PE array. In addition, at this step, the CLP 

starts to pre-load 𝑇𝑛 IFMs into the inactive input banks to overlap 
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the communication latency with the computation, similar to the 

baseline CLP (Label 5 in Fig. 5b, here  𝑇𝑛  is 2). The weights 

prefetching is ignored for the simplicity in this example, but are 

also preloaded by CLP in implementation. 

In all the above steps there is no data movement associated 

with the buffer exchanges and updates since any bank in the flexi-

ble memory architecture can be selected as an active input bank, 

an inactive input bank, an active output bank, or an inactive out-

put bank. The exchanges and updates only cause modification on 

the bank tracking arrays. Also, in order to avoid the data move-

ment due to the padding when the remaining on-chip OFMs of 

layer i are reused as IFMs for layer i+1 (Label 1 in Fig.5b), the 

output pixels should be written into the locations of the active 

output buffer (during the computation) that is compatible with the 

next layer padding dimensions and format. This means that the 

generated write addresses by the CLP should be in a range (the 

gray area of the IFM in Fig. 3) that no further relocations of 

OFM’s pixels are needed for the padding. We consider this write 

address generation pattern in our accelerator implementation to 

avoid any padding data movement. Another advantage of the pro-

posed design is that the CLP has a full control on individual 

memory banks rather than having a control on a set of memory 

banks (the baseline memory sub-system). This flexibility leads to 

a better utilization of memory banks as it is demonstrated in the 

above example. Note that, in practice, modifications on the bank 

tracking arrays for buffer status updating and exchanging (labels 

1, 2, and 4 in Fig. 5b) can take several hundreds of cycles (e.g., 

572 cycles), which is negligible as each CNN layer processing 

takes tens of thousands of cycles (e.g., 83,000 cycles). Further-

more, it can be overlapped with computation if needed, e.g., mod-

ification in the bank tracking arrays of Label 4 in Fig. 5b can be 

overlapped with the computation in the Label 3 in Fig. 5b. The 

proposed flexible on-chip memory architecture achieves on-chip 

OFMs reuse and can be employed in the both categories of data-

flow for CNN layer evaluation. 

4.2 Accelerator Implementation 

An optimization program tool is first developed to generate 

the optimized parameters (𝑇𝑛 , 𝑇𝑚 , 𝑇𝑟 , 𝑇𝑐 ) for the baseline CLP 

and the CLP based on the flexible on-chip memory architecture. 

The program enumerates all the possible combinations and selects 

a parameter set with a minimum number of execution cycles that 

satisfies the target FPGA resource budget and bandwidth con-

straint. The tool uses the models in [2] to calculate the execution 

cycles, the memory bandwidth requirement, DSP slices and 

BRAMs usage for each set of the parameters. It takes as input a 

file containing the descriptions of each CNN layer, a target FPGA 

resource budget profile, and the maximum memory bandwidth. 

After the generation of the optimized parameters for both acceler-

ators, the values are used in parameterized implementations of the 

accelerators. The accelerators are implemented in the high-level-

synthesis (HLS). Vivado HLS 2017.1 is used to compile the HLS 

implementations with the fixed parameters to synthesizable Veri-

log. We use HLS pragma and directives to instruct the compiler to 

implement the architectural structure of the accelerators. Both ac-

celerators are operated in 32-bit floating point (FP32) and 16-bit 

fixed-point arithmetic. Also, the accelerators use a separate buffer 

for pre-loading shortcut connections in residual DCNNs to reduce 

the off-chip traffic. 

A host CPU controls and initializes the accelerators. The host 

CPU is implemented as a MicroBlaze soft core processor for Xil-

inx FPGAs. The accelerators are connected to the host CPU 

through an AXI4-lite bus as a slave to receive the control com-

mands and the parameters for each CNN layer. Four separate 

AXI4 ports for loading/storing of IFMs, weights, shortcuts, and 

OFMs are used to connect the accelerators through an AXI inter-

connect to the memory interface controller. 

5 EVALUATION   
To show the effectiveness of the flexible memory in reducing 

off-chip feature map traffic during CNN layers processing, two 

accelerators based on the baseline and the proposed flexible on-

chip memory architecture are evaluated and compared to process 

different DCNNs with different range of CNN layers from 16 to 

151 (VGGNet-E, ResNet-34, ResNet-50, ResNet-152) on two 

contemporary FPGA chips (Xilinx Virtex UltraScale+ VU9P and 

VU13P). We used the optimization tool to generate the accelera-

tor’s parameters for a given FPGA and DCNN under the same on-

chip memory size constraint for fair comparison.  

5.1 32-bit Floating-Point  

In our first evaluation, we run ResNet-152 on the Virtex Ul-

traScale+ VU9P FPGA. Table 2 shows the optimized parameters 

(𝑇𝑛 , 𝑇𝑚) generated by the tool to meet the memory bandwidth 

constraint and target frequency, along with the throughput. Since 

the deep ResNets have considerable numbers of shortcut connec-

tions, both implemented accelerators use a dedicated buffer to pre-

load and store the shortcut connections to facilitate the ResNets 

processing. The shortcut connection buffer is implemented by the 

URAM blocks, while the BRAMs are used to implement the IFM 

and the OFM buffers, and the weights buffer are implemented us-

ing distributed RAMs, with 32-bit floating point arithmetic in both 

accelerators. Table 3 shows the FPGA resource utilization. Our 

experiment results show that the CLP with the flexible on-chip 

memory architecture has 16% lower feature map traffic between 

the accelerator and the off-chip memory during CNN layer evalu-

ation, compared with the baseline CLB. The proposed architecture 

achieves a significant reduction in URAM usage (and some reduc-

tion in BRAM usage), with only slight increased use of DSPs, 

LUTs, and FFs.   

Table 2: Accelerators comparison for ResNet-152 

Accelerator 
Type 

Tn Tm 
Frequency 

(MHZ) 

Memory 

Bandwidth 

(GB/s) 

Throughput 

(cycles per 

Image) 

Baseline 8 128 100 10.4 12,641,195 

Flexible 8 128 100 10.4 12,830,812 

 

Table 3: FPGA resource usage 
Accelerator 

(Tn, Tm) 
URAMs 

BRAM

18K 

DSP 

Slices 
FFs LUTs 

Baseline 

(8,128) 
512 2,294 5,461 693,247 523,789 

Flexible 
(8,128) 

256 2,176 5,627 719,904 540,803 

Available 960 4,318 6,840 2,364,480 1,182,240 

5.2 Scalability of Flexible Memory Sub-System  

We also extend our experiments and target a more advanced 

FPGA chip (VU13P FPGA) to show the scalability and advantage 

of using the proposed flexible memory architecture. The accelera-

tors are evaluated to process four DCNNs with a different range 

of CNN layers. The networks are selected in order to show the 

advantage of the proposed design as deeper networks are used. 

32-bit floating point arithmetic is used for data representation in 



  

 

 

the networks. Fig. 6 shows the off-chip feature map traffic be-

tween the accelerator and the external memory. The accelerator 

based on the proposed architecture is able to reduce the off-chip 

feature map traffic for VGGNet-E, ResNet-34, ResNet-50 and 

ResNet-152 by 11%, 14.5%, 23.6%, and 40%, respectively. This 

indicates that, as deeper networks are used to meet the accuracy 

requirement, the proposed design will likely be more effective to 

reduce the off-chip traffic.  

5.3 16-bit Fixed-Point    

There is an increasing trend to use compact data representa-

tions in DCNNs to improve the efficiency [3]. Therefore, in order 

to investigate the impact of using a compact data representation 

on the effectiveness of the flexible memory sub-system, we con-

duct further experiments for 16-bit fixed-point on a network with 

a shallow depth (VGGNet-E). Using a shallow depth network 

with a compact data type can highlight the efficiency of the flexi-

ble on-chip memory architecture more clearly as the proposed de-

sign achieves a better performance for deeper networks. Again, 

our developed optimization tool is used to generate the parameters 

of both accelerators for the VGGNet-E on VU9P FPGA in 16-bit 

fixed-point. The generated parameters are used to customize the 

parameterized HLS implementations of both accelerators. Exper-

iment results show that, for the 16-bit fixed-point data type, the 

accelerator based on the proposed architecture can reduce the fea-

ture map traffic by nearly 50% for VGGNet-E and reduce the us-

age of BRAMs by 23%, compared with the baseline. This shows 

the capability of the proposed approach for deep networks with 

compact data types. The accelerators based on the approach and 

the baseline schemes can reach a throughput of 5,342,237 cy-

cles/image and 5,136,768 cycles/image, respectively.    

 
Fig. 6: Normalized off-chip feature map traffic in FP32     

 

6 RELATED WORK 
There is an increasing amount of work focusing on accelerat-

ing DCNNs on FPGAs [2,4-7]. However, all of them suffer from 

the static bank assignment problem, and the accelerator cannot 

effectively reuse feature maps for the next layer CNN processing. 

For example, the most recent work on the FPGA-based CNN ac-

celeration [2] proposes a solution for the under-utilization prob-

lem of DSP slices (the arithmetic units in the CLP); whereas the 

proposed flexible memory architecture focuses on off-chip feature 

map traffic reduction, thus complementing [2]. Specifically, the 

solution in [2] tackles the under-utilization problem by partition-

ing FPGA resources among multiple accelerators (multi-CLP) 

with different smaller sizes. In case that the same CLP is used to 

process adjacent CNN layers in the multi-CLP approach, the flex-

ible memory architecture can be used in each accelerator of the 

multi-CLP approach to reduce the off-chip feature map traffic as 

well as the overall off-chip feature map traffic generated by all the 

CLPs. In another recent example [4], a flexible buffering scheme 

is presented for the CLP to balance the off-chip bandwidth be-

tween feature maps and weights by choosing an optimal batch size 

[4]. However, the accelerator still suffers from the static bank as-

signment and the proposed architecture can be used to reuse fea-

ture maps. Another example is the fused-CNN accelerator dis-

cussed previously [9]. Other earlier works such as [11, 12] focus 

on the two-dimensional convolution engine, including the order of 

fetching data for processing and the data caching, but not for 3D 

convolution structures in deep networks.  

 

7 CONCLUSION 
With the objective of utilizing reusable data during the compu-

tational transition between CNN layers, we propose a flexible on-

chip memory architecture with a bank management scheme. The 

key motivation behind our design is to address the static assign-

ment of memory banks and more efficient utilization of large on-

chip memories in modern FPGAs. In the proposed architecture, 

each individual memory bank can set its status dynamically dur-

ing CNN processing and computational transition to the next lay-

er. Experiment results show that using the proposed architecture 

can reduce the feature map traffic by 40% for a deep network such 

as ResNet-152 in 32-bit floating point on the Xilinx VU13P 

FPGAs, and reduce the off-chip feature map traffic by 50% in a 

more compact data type on the Xilinx VU9P FPGA.  
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