
Flexible On-chip Memory Architecture for DCNN Accelerators

Arash Azizimazreah Lizhong Chen

Oregon State University, OR, 97331, USA

{azizimaa, chenliz}@oregonstate.edu

ABSTRACT
Recent studies show that as the depth of Convolution Neural Net-

works (CNNs) increases for higher performance in different ma-

chine learning tasks, a major bottleneck in the improvement of

deep CNNs (DCNNs) processing is the traffic between the accel-

erator and off-chip memory. However, current state-of-the-art ac-

celerators cannot effectively reduce off-chip feature map traffic

due to the limited capability in reusing output feature maps from

the previous CNN layer to the next. In this paper, we propose a

flexible on-chip memory architecture with a memory bank man-

agement scheme to reduce feature map data movement during the

computational transition between CNN layers. Moreover, the pro-

posed scheme can also be used as a complementing approach to

existing CNN dataflows to further improve the energy efficiency

of DCNN accelerators. Experiment results show that the proposed

scheme can reduce the off-chip feature map traffic of ResNet-152

and VGGNet-E by 40% and 50% in 32-bit floating point and 16-

bit fixed-point arithmetic, respectively, on Xilinx Virtex FPGAs.

1 INTRODUCTION
 To achieve higher accuracy, current deep convolution neural

networks (DCNNs) employ many CNN layers, with some exceed-

ing a thousand layers [1]. However, DCNNs become very compu-

tation and memory intensive as they evolve to deeper structures.

This rapidly increased demand on computation and memory re-

sources has caused conventional CPUs to be a bottleneck in pro-

cessing DCNNs during both training and inference [2]. Alterna-

tively, while GPUs have also been used to process DCNNs by

exploring their massive parallelism, the large power consumption

of GPUs has limited their extensive uses in data-center applica-

tions and embedded systems where power is critical. Meanwhile,

FPGAs as reconfigurable computing platforms are able to provide

an energy-efficient and massively parallel processing capability at

the same time, thus surging as an attractive candidate for energy-

efficient DCNNs acceleration in recent years.

The state-of-the-art FPGA-based accelerators process DCNNs

layer by layer [2-7], but they all suffer from a problem which we

refer to as the static bank assignment problem. That is, the as-

signment of banks to the input feature map (IFM) buffer and out-

put feature map (OFM) buffer are statically determined at the de-

sign time and cannot be changed after implementation. This static

bank assignment forces accelerators to write back on-chip OFMs

during the transition from processing one layer to the next. This

policy makes sense previously where the size of OFM buffer was

small and there were negligible performance and energy benefits

in the reusing the data in OFM buffer due to the small size of on-

chip memory on FPGA chips. However, modern FPGAs typically

contain a considerable amount of on-chip memory, e.g., the Xilinx

Virtex UlteraScale+ FPGAs have up to 56.81MB on-chip memory

organized as BRAMs and URAMs [8]. Moreover, as DCNNs

evolve to deeper structures, the contribution of feature map data

movement across layers shows an increasing trend [9]. Conse-

quently, the static bank assignment policy leads to a poor utiliza-

tion of on-chip memory and squanders the opportunity in reusing

OFMs as the IFMs for the next layer.

Nevertheless, reusing OFMs for the next layer processing fac-

es several major implementation challenges including how to keep

track of individual memory banks as each bank is used in both

input and output buffer to reuse OFMs. Therefore, the current ar-

chitecture and management of the on-chip memory sub-system in

FPGA-based DCNN accelerators need to be redesigned for a more

efficient utilization of the large on-chip memory in modern

FPGAs.

To address the limitation of static bank assignment and enable

efficient OFM reuse, in this paper, we propose a flexible on-chip

memory architecture with a memory bank management scheme to

maximize OFM reuse during the computational transition between

two consecutive CNN layers. The proposed flexible memory sub-

system can be used in existing CNN dataflows to improve their

ability in reducing off-chip traffic. Experiment results show that

the proposed architecture is able to reduce the feature map traffic

by 40% for a deep network ResNet-152 in 32-bit floating point on

Xilinx VU13P FPGAs, and reduce the traffic by 50% in a more

compact 16-bit fixed-point data type on Xilinx VU9P FPGA.

The rest of this paper is organized as follows. Section 2 pro-

vides more background on the architecture of state-of-the-art

FPGA-based DCNN accelerators. Section 3 discusses the motiva-

tion for this work. In Section 4, we describe the proposed memory

sub-system architecture, its management scheme, and the imple-

mentation in detail. Evaluation results and analysis are presented

in Section 5. Finally, related work is summarized in Section 6, and

Section 7 concludes this paper.

2 MODERN DCNN ACCELERATORS
The original core of the state-of-the-art DCNN accelerators is

a processing fabric based on the spatial architecture [10]. A

DCNN accelerator based on the spatial architecture can be broken

down into two main components: an array of processing elements

(PEs) and on-chip buffers [10]. The PE array is responsible for

carrying out the computation of CNN layers. The on-chip buffers

cache the required data during the acceleration. The PE array and

the on-chip buffers are connected via a simple network-on-chip.

The granularity of PEs can vary from a simple multiplier and

adder (fine-grained) to a vector-dot-product (coarse-grained). The

state-of-the-art FPGA-based DCNN accelerators such as [2, 4, 6,

9] use a convolution layer processor (CLP) to evaluate the CNN

layers sequentially [2]. Fig. 1 shows the datapath of a convolution

layer processor. The PE array fetches Tn IFM pixels from the in-

put buffer, 𝑇𝑛 × 𝑇𝑚weights from the weight buffer and Tm OFM

partial sums (psum) from the output buffer, and then calculates Tm

OFM psums or pixels simultaneously. We define the Tn and Tm in

more detail later in subsection 2.2.

2.1 CNN Dataflow

 CNN dataflows can generally be classified into two catego-

ries. The first category of CNN dataflows controls the accelerator

to evaluate a CNN in a layer-by-layer fashion based on the net-

work’s natural structure. This category of dataflows (single-layer

dataflows) assumes that at the beginning of each CNN layer pro-

cessing, the input feature maps are stored in the off-chip memory.

Then, after finishing processing the CNN layer, the computed

output feature maps are written back into the off-chip memory.

This assumption causes a great number of feature maps being

written/read back and forth between the off-chip memory and the

accelerator during the CNN processing. Examples of dataflows in

the first category are reported in [6, 10, 11, 12].

The second category of CNN dataflows focuses on the data

movement between CNN layers rather than the data movement in

a single CNN layer. To our knowledge, only one dataflow report-

ed in [9] (fused-CNN dataflow) is in this latter category. This

dataflow fuses the computation of several CNN layers together to

eliminate the off-chip memory traffic (for the fused layers only)

by avoiding fetching the intermediate feature maps. The fused-

CNN dataflow is most effective for the first few CNN layers

where feature maps have large grids (dimensions) requiring extra

on-chip storage or re-computing energy. Applying this dataflow

results in the cascading of multiple CLPs in the pipeline fashion.

Once a CLP computes a CNN layer instead of writing back the

computed OFM pixels, the pixels are used by the next CLP in the

pipeline to eliminate the off-chip memory traffic due to the write-

back of the intermediate feature maps. The problem with this ap-

proach, however, is that the power efficient fusion of multiple

CNN layers costs prohibitive on-chip storage. For a given FPGA

with certain on-chip memory budget, only very few layers can be

fused (e.g., 5 layers). In the shallow networks, such as AlexNet

and VGGNets with a maximum number of sixteen CNN layers,

because the first few CNN layers of the network have the largest

feature map traffic in the network, only the first few CNN layers

of these shallow networks need to be fused together to reduce fea-

ture map traffic. However, modern DCNNs have a large number

of layers (easily exceeding hundreds), and the feature map traffic

is distributed across the network rather than on the first few CNN

layers. Thus, the effectiveness of this approach is very limited.

Fig. 1: Convolution layer processor (CLP) datapath.

2.2 Tiling

The tiling technique is often used on feature maps to reduce

the requirement for on-chip memory [5]. Each feature map is tiled

by a factor of Tr and Tc in the row and the column, respectively.

Also, Tn is the tiling factor on the N IFMs, and Tm is the tiling fac-

tor on M OFMs. Fig. 2a shows the tiling of feature maps of a con-

volutional layer in a CLP. Based on the available computational

resources of the target FPGA and the dimensions of the CNN lay-

er, the optimal values for Tn and Tm can be found for the minimal

execution cycles. However, the optimal values for these parame-

ters (Tn, Tm) can be different for different CNN layers. As de-

scribed in [6], the global optimal values of Tn and Tm for the max-

imum performance can be selected by enumerating of all possible

combinations of Tn and Tm. The optimal values of Tn and Tm

across all CNN layers are called cross-layer unroll factors. Fig. 2b

shows an example pseudo code of the tiling technique in the CLP.

The main modules are the Load_IFM_Tile, Load_Weight, Conv

and Store_OFM_Tile. The Load and Store modules interact with

external memory. “DATAFLOW” directive applies the ping-pong

operation to overlap the computation and the communication la-

tency, as explained in the next sub-section. We define the direc-

tion of processing as the counting direction of r, c, m, and n loops

in Fig. 2b, e.g., up-counting signifies an increasing value of the

counting variable when processing (like Fig 2b). Therefore, if for

a given layer i the direction of processing is up-counting, revers-

ing the direction of processing for the next layer means that layer

i+1 is processed in the down-counting direction.

Fig. 2a: Tiling of feature maps of a CNN layer in CLP.

1:

2:

3:

4:

5:

6:

7:

8:

for (r =0; r<R; r+= Tr)

 for(c =0; c<C; c+= Tc)

 for (m =0; m<M; m+= Tm)

 for (n =0; n<N; n+= Tn)

#pragma DATAFLOW {

 Load_IFM_Tile(n,r,c);

 Load_Weights (n,m);

 Conv();

 Store_OFM_Tile(m,r,c); }

Fig. 2b: Pseudo code example for tiling technique in CLP.

2.3 On-chip Memory Sub-System

The on-chip memory sub-system is a vital part of DCNN ac-

celerators and has a considerable impact on the performance and

energy of CNN accelerators [11]. The CLP organizes its on-chip

memory as double input and output buffers in the ping-pong man-

ner, so as to hide the communication latency of the off-chip

memory by overlapping loading/storing time with computation

time [2, 4, 6, 9]. As shown in Fig. 2a, the input and output buffers

that are used by the PEs during convolutional layer processing are

active input and output buffers; whereas the other set of input and

output buffers that are used by the data transfer manager for pre-

loading and storing are inactive buffers.

The on-chip memory of FPGA-based DCNN accelerators is

organized as a banked memory rather than a unified memory [11]

(as well as all the current state-of-the-art designs [2, 4, 6]), be-

cause the banked memory organization provides multiple simulta-

neous accesses to IFM pixels, weights, and partial sums (interme-

diate results). The IFM, OFM, and weight buffers (both active and

inactive) of the CLP are implemented as 2 × 𝑇𝑛 , 2 × 𝑇𝑚, and

2 × (𝑇𝑛 × 𝑇𝑚)independent memory banks, respectively. It means

that in every cycle, the CLP can read 𝑇𝑛 pixels from the input fea-

ture map buffer and write 𝑇𝑚 pixels (or partial sums) into the out-

put feature maps buffer (see Fig. 1). Meanwhile, the accelerator

can load IFMs from the off-chip memory into 𝑇𝑛 inactive input

banks, and it can store OFMs from 𝑇𝑚 inactive output banks into

the off-chip memory to hide the off-chip memory latency. Each

input buffer bank has the size of [𝑆 × 𝑇𝑟 + 𝐾 − 𝑆] × [𝑆 × 𝑇𝑐 +
𝐾 − 𝑆] words. Where, K and S are the size of the kernel and

stride, respectively. Also, the size of each output and weight buff-

er bank is 𝑇𝑟 × 𝑇𝑐 and 𝐾 × 𝐾 words, respectively [2, 4]. Different

layers may have different parameters in a DCNN. Therefore, each

Weights

+

+

Input Buffers Output Buffers

Multiplier
Tree Adder
Memory Bank

Words

Vector-dot-product

Weights

Off-Chip Memory
Active

Inactive

Vector-dot-product Engines

R

N

Input Feature Maps
C

M

Output Feature Maps

IFMsWeights PSUM PSUM /OFMs

Input Buffer Output Buffer

On-Chip Memory BanksBanks

×

input, output and weight buffer bank should be sized properly to

support all layers [4].

The modern FPGAs may have enough on-chip memory to ac-

commodate a considerable portion of a CNN layer or, in some

cases, the entire CNN layer. Table 1 shows the available on-chip

memory in modern Xilinx FPGAs. FPGAs from the Virtex Ul-

traScale+ family can have an on-chip memory up to 56.81MB

(45MB UltraRAM+11.81 BRAMs). In comparison, the four larg-

est CNN layers in ResNet with 151 CNN layers (ResNet-152) re-

quired 9.19MB, 6.95MB, 3.7MB, and 2.27MB in 32-bit floating

point data type. Thus, it can be seen from Table 1 that a modern

FPGA such as an FPGA from the Xilinx Virtex UlteraScale+ fam-

ily can store each of these four largest CNN layers of ResNet-152

on-chip.

Table 1: On-chip memory in modern Xilinx FPGAs
Xilinx FPGA Family [8] On-Chip Memory

Block Memory(MB) UltraRAM(MB)

Virtex UltraScale+ 3.16 – 11.81 11.25 – 45

Kintex UltraScale+ 1.59 – 4.32 4.5

3 MOTIVATIONS AND CHALLENGES
As CNNs evolve to the deeper structures, the off-chip feature

map traffic increases rapidly [9]. Our goal is to reuse the on-chip

OFMs at the end of each CNN layer processing as part of the

IFMs for the next layer to reduce the off-chip feature map traffic.

The key motivation behind the on-chip OFMs reuse is that a mod-

ern FPGA has a large amount of on-chip memory and reusing the

large amount of on-chip OFMs can provide a unique opportunity

to reduce the off-chip feature map traffic. However, the OFMs

reuse faces the following challenges in the start-of-the-art FPGA-

based CNN accelerators.

Static Memory Bank Assignment. As explained previously,

the on-chip memory sub-system of the CLP includes two sets of

input buffer (which includes the weights buffer) and output buffer

to support the ping-pong operation for overlapping the computa-

tion with the communication. While the input and the output sets

change their status between the active and the inactive modes dy-

namically, the type of the sets is static and this assignment is per-

formed during the design time. This means that the memory banks

in the input buffer are always used at the input of the PEs and

memory banks in the output buffer always are used at the output

of the PEs. This kind of the static bank assignment limits the reuse

opportunity of the OFMs of the current layer as the IFMs for next

layer processing. The static assignment forces the CLP with a sin-

gle-layer dataflow to write back the OFMs during the processing

transition from one layer to the next layer. Even when multi-CLP

are cascaded in the pipeline manner to implement the fused-CNN

dataflow, the accelerator still suffers from the static memory bank

assignment problem. This is because, when the accelerator finish-

es the computation of the fused CNN layers, the OFMs of the last

fused layer must be stored into the DRAM by the accelerator [9].

That is, the first layer’s input feature maps (the starting point of

the fusion) are loaded into the on-chip memory and after the fu-

sion evaluation, the last fused layer’s output feature maps (the

stopping point of the fusion) in the output buffer are written back

to the DRAM [9].

OFM Reuse Challenges. There are two major challenges in

the on-chip OFMs reuse implementation:

1)-Padding around the OFMs: In order to reuse layer i's OFMs

(which are on-chip) as the IFMs of the layer i+1, a padding should

be performed around the OFMs, to prepare them for further pro-

cessing. Depending on the position of the remaining tile of OFMs

(the upper left corner or the lower right corner) in the output buff-

er at the end of layer i processing, different areas of the OFMs

should be padded to make the OFMs ready for reusing in the layer

i+1 as is illustrated in Fig. 3a. However, performing the padding

on the on-chip OFMs can cause the position of the pixels in the

output buffer banks changes. Fig. 3b illustrates an example of the

pixel relocation issue where padding is performed on a 3×3 OFM,

with kernel size of 3 and stride of 1. The relocation of the on-chip

OFM pixels causes on-chip data movement and energy consump-

tion. The situation becomes worse in the modern FPGAs with a

large on-chip memory where a considerable amount of OFMs can

be reused. Therefore, the computed OFM pixels should be written

in the locations of the output buffer where performing the padding

doesn’t need any further pixel relocation.

2)-Memory Bank Tracking: State-of-the-art implementations of

the CLP use High-Level Synthesis (HLS) [2, 4, 6, 9]. For exam-

ple, the most recent implementation of the CLP uses C++ HLS.

The “DATAFLOW” directive is used for implementing the ping-

pong operation [2]. If a flexible on-chip memory is employed to

solve the static memory bank assignment problem, each bank

needs to have the ability to be used as an active input bank, an

inactive input bank, an active output bank, or an inactive output

bank. For efficient reuse of on-chip OFMs, the CLP should be

able to keep track of individual banks during the ping-pong opera-

tion. Consequently, in the implementation of the CLP with the

flexible on-chip memory instead of relying on the “DATAFLOW”

directive for the ping-pong operation, a new tracking scheme of

individual memory banks should be used.

Fig. 3: Padding on the OFMs for reusing.

4 FLEXIBLE ON-CHIP MEMORY
The static memory bank assignment limits the OFM reuse

during the computational transition between adjacent layers. To

address this limitation in the CLP, we proposed a flexible on-chip

memory architecture as shown in Fig. 4. In the proposed design,

each memory bank can be used either as an input bank or an out-

put bank by the CLP during the CNN layer processing. This facili-

tates the on-chip OFM reuse for the next layer processing without

additional on-chip data movement. As each bank is used to store a

tile of an IFM or a tile of an OFM, the size of a bank should be

large enough to support the storage requirements across the CNN

layers. This means that the size of each bank should be [𝑆 × 𝑇𝑟 +
𝐾 − 𝑆] × [𝑆 × 𝑇𝑐 + 𝐾 − 𝑆] words and the 𝑇𝑟, 𝑇𝑐, 𝑆, and 𝐾 should

be set to provide enough space for the CNN layer that needs the

largest on-chip memory. Note that the proposed on-chip memory

architecture can be configured to work with different on-chip

memory sizes. This is because the row and the column tiling fac-

tors (𝑇𝑟,𝑇𝑐) can be adjusted separately in the flexible memory ar-

chitecture for any given memory size constraint. For example, 𝑇𝑟,

and 𝑇𝑐 can be selected to use the same amount of on-chip memory

that is used for the baseline memory sub-system. In order to keep

Padding
Area

Padding
Area

IFM of Layer i+1 IFM of Layer i+1
OFMs of Layer i OFMs of Layer i

Padding

OFM of
Layer i

OFM of
Layer i

Padding

P1 P2 P3

P4 P5 P6

P7 P8 P9

P1
P2
P3
P4
P5

0
1
2
3
4
5 P6

P1 P2 P3

P4 P5 P6

P7 P8 P9

Z
Z
Z
Z
Z

0
1
2
3
4
5 Z
6 P1

Add Data Add Data

P: Pixel
Z: Zero

3×3 OFM

MEM Bank

K=3
S=1

5×5 IFM

(b)

(a)

Padding

track of the status of each individual bank, the flexible memory

sub-system holds four arrays for active input banks (with 𝑇𝑛 en-

tries), inactive input banks (with 𝑇𝑛 entries), active output banks

(with 𝑇𝑚 entries), inactive output banks (with 𝑇𝑚 entries). We call

these arrays as bank tracking arrays. Each element of the arrays

stores the index of a memory bank. For example, the array for the

active input banks has 𝑇𝑛 entries and this array stores the index of

all the banks that can be used as the active input banks. This data

structure allows the implementation of a tracking scheme to track

individual banks during the ping-pong operation.

4.1 On-chip Memory Bank Management

To reduce off-chip feature map traffic and increase on-chip

buffers utilization, we develop an on-chip memory bank manage-

ment scheme for the proposed flexible on-chip memory architec-

ture. This scheme is based on maximizing the feature map reuse

during the computational transition from one CNN layer to the

next CNN layer. In the following, to keep the generality of the

proposed approach, we assume that the active output buffers con-

tain 𝑇𝑚 tiles of OFMs at the end of each CNN layer processing,

and each output tile contains 𝑇𝑟 × 𝑇𝑐 OFM pixels (see Figure 2).

However, in practice, depending on the FPGA chip, it is possible

to hold an entire OFM on-chip. Our experiment results on differ-

ent DCNNs and FPGAs show that the optimal value of the cross-

layer unroll factor 𝑇𝑚 is greater than 𝑇𝑛. The current implementa-

tions of the CLP including [2, 6] also confirm this observation.

Fig. 4: CLP datapath based on the flexible on-chip memory.

After finishing the current convolutional layer under pro-

cessing (layer i), the active output buffer contains 𝑇𝑚 tiles of the

OFMs. In the proposed approach, instead of writing these 𝑇𝑚 tiles

of the OFMs back into the off-chip memory and reading them

again, these on-chip tiles can be used for the next layer processing

(layer i+1) as the IFMs as shown in Fig. 5a. By reversing the di-

rection of processing and switching between input and output

buffers during the layer i+1’s evaluation alternatively, the CLP

can reuse the 𝑇𝑚 tiles of the layer i’s OFMs as the IFMs for the

layer i+1 (see Fig. 5a). Since during the layer i+1 processing the

CLP reuses the feature maps of the layer i, there is no need to load

the feature maps from the off-chip memory. Therefore, the CLP

does not use the inactive buffers to hide the off-chip memory la-

tency. Instead, the accelerator preserves the OFMs from the pre-

vious layer (layer i) in the inactive output buffer for the future us-

es in the layer i+1 processing (referred to as the inactive output

banks which preserve OFMs from the previous layer as inactive

reserved banks). After consuming all the on-chip OFMs, the ac-

celerator should access the off-chip memory for the continuation

of the layer i+1 processing. In this scenario, the accelerator always

skips the loading 𝑇𝑚 tiles of the layer i+1’s IFMs and if 𝑀𝑖+1 ≤
𝑇𝑚it can also skips the writing of 𝑇𝑚 tiles of the layer i's OFMs.

Fig. 5: Illustration of reusing the OFMs of layer i as IFMs of

layer i+1 at the memory bank level.

Fig. 5b illustrates an example of using the proposed memory

bank management scheme in a CLP based on the flexible on-chip

memory. For simplicity, we assume that each memory bank of the

CLP can store a complete feature map (which is highly practical

in modern FPGAs). Note that each bank of the CLP can be im-

plemented by several BRAMs or UltraRAMs. In this example, we

assume 2 and 4 values for 𝑇𝑛 and 𝑇𝑚, respectively. Also, layer i+1

has eight IFMs (N=8) and four OFMs (M=4). Therefore, at the

end of layer i processing four OFMs (in general 𝑇𝑚 OFMs) of this

layer remain on-chip which they can be reused as the IFMs for

layer i+1 (𝑀𝑖 = 𝑁𝑖+1). The rest IFMs (in this example four IFMs)

to complete the processing of layer i+1 are already computed dur-

ing the processing of layer i but are currently stored in the off-chip

memory. The following steps explain the reuse of on-chip OFMs

of layer i as well as pre-loading the rest of IFMs for the next CNN

layer i+1 processing. 1) At the end of the layer i processing, the

CLP reverses the processing direction. In this example, the direc-

tion of processing changes from up-counting to down-counting. 2)

The CLP keeps the OFMs of layer i on-chip for reusing as IFMs

in the layer i+1 processing by switching the status of the active

output banks to the inactive output banks (Label 1 in Fig. 5b). 3)

The CLP exchanges 𝑇𝑛 active input banks with 𝑇𝑛 inactive output

banks (reserved banks) which contain IFMs (Label 2 in Fig.5b,

here 𝑇𝑛 is 2). The exchange is done through index array manipula-

tion rather than moving data across banks physically. 4) After the

exchange, computation can be started by the PE array (Label 3 in

Fig. 5b). 4) Again, the CLP exchanges 𝑇𝑛 active input banks with

the rest 𝑇𝑛 inactive output banks which contain another 𝑇𝑛 IFMs.

5) After the exchange, computation can be continued by the PE

array. At this point, all the 𝑇𝑚OFMs which are remained on-chip

at the end of layer i processing are reused as the IFMs for layer

i+1 processing by the PE array. In addition, at this step, the CLP

starts to pre-load 𝑇𝑛 IFMs into the inactive input banks to overlap

+

+

Weights

2×(Tn+Tm) Banks

C
ro

ss
b

ar
C

ro
ss

b
ar

C
ro

ss
b

ar

2×(Tn+Tm)-Words

Words

Words

Words

IFM

PSUM

OFM/PSUM

2
×(

Tn
+T

m
)-

W
o

rd
s

Weights

IFMs Layer i OFMs Layer i

Processing Direction
(Up-Counting)

OFM Layer i =IFMs Layer i+1 OFMs Layer i+1

Processing Direction
(Down-Counting)r

c

PE array

Crossbars

Out

PE array

In

Crossbars

1 2

Tn=2, Tm=4

4

(a)

(b)

Discard

1
OutIn

PE array

Crossbars

2

PE array

Crossbars

In

PE array

Crossbars

OutIn

OFM Computation by PE Array3

PE array

Crossbars

Off-Chip
Memory

54

Exchange

Exchange

Out

Active & Empty
Inactive & Empty

Inactive & Contain IFM-
Active & Contain PSUM

Active & Contain OFM

Active & Contain IFM
Possible Bank Status

For Layer i+1 : N=8 & M=4

OFM Computation by PE Array Overlapped
with Off-chip Loading

n, m

n, m

c

r

OFM of layer i → IFM of Layer i+1

(Referred as Reserved)

the communication latency with the computation, similar to the

baseline CLP (Label 5 in Fig. 5b, here 𝑇𝑛 is 2). The weights

prefetching is ignored for the simplicity in this example, but are

also preloaded by CLP in implementation.

In all the above steps there is no data movement associated

with the buffer exchanges and updates since any bank in the flexi-

ble memory architecture can be selected as an active input bank,

an inactive input bank, an active output bank, or an inactive out-

put bank. The exchanges and updates only cause modification on

the bank tracking arrays. Also, in order to avoid the data move-

ment due to the padding when the remaining on-chip OFMs of

layer i are reused as IFMs for layer i+1 (Label 1 in Fig.5b), the

output pixels should be written into the locations of the active

output buffer (during the computation) that is compatible with the

next layer padding dimensions and format. This means that the

generated write addresses by the CLP should be in a range (the

gray area of the IFM in Fig. 3) that no further relocations of

OFM’s pixels are needed for the padding. We consider this write

address generation pattern in our accelerator implementation to

avoid any padding data movement. Another advantage of the pro-

posed design is that the CLP has a full control on individual

memory banks rather than having a control on a set of memory

banks (the baseline memory sub-system). This flexibility leads to

a better utilization of memory banks as it is demonstrated in the

above example. Note that, in practice, modifications on the bank

tracking arrays for buffer status updating and exchanging (labels

1, 2, and 4 in Fig. 5b) can take several hundreds of cycles (e.g.,

572 cycles), which is negligible as each CNN layer processing

takes tens of thousands of cycles (e.g., 83,000 cycles). Further-

more, it can be overlapped with computation if needed, e.g., mod-

ification in the bank tracking arrays of Label 4 in Fig. 5b can be

overlapped with the computation in the Label 3 in Fig. 5b. The

proposed flexible on-chip memory architecture achieves on-chip

OFMs reuse and can be employed in the both categories of data-

flow for CNN layer evaluation.

4.2 Accelerator Implementation

An optimization program tool is first developed to generate

the optimized parameters (𝑇𝑛 , 𝑇𝑚 , 𝑇𝑟 , 𝑇𝑐) for the baseline CLP

and the CLP based on the flexible on-chip memory architecture.

The program enumerates all the possible combinations and selects

a parameter set with a minimum number of execution cycles that

satisfies the target FPGA resource budget and bandwidth con-

straint. The tool uses the models in [2] to calculate the execution

cycles, the memory bandwidth requirement, DSP slices and

BRAMs usage for each set of the parameters. It takes as input a

file containing the descriptions of each CNN layer, a target FPGA

resource budget profile, and the maximum memory bandwidth.

After the generation of the optimized parameters for both acceler-

ators, the values are used in parameterized implementations of the

accelerators. The accelerators are implemented in the high-level-

synthesis (HLS). Vivado HLS 2017.1 is used to compile the HLS

implementations with the fixed parameters to synthesizable Veri-

log. We use HLS pragma and directives to instruct the compiler to

implement the architectural structure of the accelerators. Both ac-

celerators are operated in 32-bit floating point (FP32) and 16-bit

fixed-point arithmetic. Also, the accelerators use a separate buffer

for pre-loading shortcut connections in residual DCNNs to reduce

the off-chip traffic.

A host CPU controls and initializes the accelerators. The host

CPU is implemented as a MicroBlaze soft core processor for Xil-

inx FPGAs. The accelerators are connected to the host CPU

through an AXI4-lite bus as a slave to receive the control com-

mands and the parameters for each CNN layer. Four separate

AXI4 ports for loading/storing of IFMs, weights, shortcuts, and

OFMs are used to connect the accelerators through an AXI inter-

connect to the memory interface controller.

5 EVALUATION
To show the effectiveness of the flexible memory in reducing

off-chip feature map traffic during CNN layers processing, two

accelerators based on the baseline and the proposed flexible on-

chip memory architecture are evaluated and compared to process

different DCNNs with different range of CNN layers from 16 to

151 (VGGNet-E, ResNet-34, ResNet-50, ResNet-152) on two

contemporary FPGA chips (Xilinx Virtex UltraScale+ VU9P and

VU13P). We used the optimization tool to generate the accelera-

tor’s parameters for a given FPGA and DCNN under the same on-

chip memory size constraint for fair comparison.

5.1 32-bit Floating-Point

In our first evaluation, we run ResNet-152 on the Virtex Ul-

traScale+ VU9P FPGA. Table 2 shows the optimized parameters

(𝑇𝑛 , 𝑇𝑚) generated by the tool to meet the memory bandwidth

constraint and target frequency, along with the throughput. Since

the deep ResNets have considerable numbers of shortcut connec-

tions, both implemented accelerators use a dedicated buffer to pre-

load and store the shortcut connections to facilitate the ResNets

processing. The shortcut connection buffer is implemented by the

URAM blocks, while the BRAMs are used to implement the IFM

and the OFM buffers, and the weights buffer are implemented us-

ing distributed RAMs, with 32-bit floating point arithmetic in both

accelerators. Table 3 shows the FPGA resource utilization. Our

experiment results show that the CLP with the flexible on-chip

memory architecture has 16% lower feature map traffic between

the accelerator and the off-chip memory during CNN layer evalu-

ation, compared with the baseline CLB. The proposed architecture

achieves a significant reduction in URAM usage (and some reduc-

tion in BRAM usage), with only slight increased use of DSPs,

LUTs, and FFs.

Table 2: Accelerators comparison for ResNet-152

Accelerator
Type

Tn Tm
Frequency

(MHZ)

Memory

Bandwidth

(GB/s)

Throughput

(cycles per

Image)

Baseline 8 128 100 10.4 12,641,195

Flexible 8 128 100 10.4 12,830,812

Table 3: FPGA resource usage
Accelerator

(Tn, Tm)
URAMs

BRAM

18K

DSP

Slices
FFs LUTs

Baseline

(8,128)
512 2,294 5,461 693,247 523,789

Flexible
(8,128)

256 2,176 5,627 719,904 540,803

Available 960 4,318 6,840 2,364,480 1,182,240

5.2 Scalability of Flexible Memory Sub-System

We also extend our experiments and target a more advanced

FPGA chip (VU13P FPGA) to show the scalability and advantage

of using the proposed flexible memory architecture. The accelera-

tors are evaluated to process four DCNNs with a different range

of CNN layers. The networks are selected in order to show the

advantage of the proposed design as deeper networks are used.

32-bit floating point arithmetic is used for data representation in

the networks. Fig. 6 shows the off-chip feature map traffic be-

tween the accelerator and the external memory. The accelerator

based on the proposed architecture is able to reduce the off-chip

feature map traffic for VGGNet-E, ResNet-34, ResNet-50 and

ResNet-152 by 11%, 14.5%, 23.6%, and 40%, respectively. This

indicates that, as deeper networks are used to meet the accuracy

requirement, the proposed design will likely be more effective to

reduce the off-chip traffic.

5.3 16-bit Fixed-Point

There is an increasing trend to use compact data representa-

tions in DCNNs to improve the efficiency [3]. Therefore, in order

to investigate the impact of using a compact data representation

on the effectiveness of the flexible memory sub-system, we con-

duct further experiments for 16-bit fixed-point on a network with

a shallow depth (VGGNet-E). Using a shallow depth network

with a compact data type can highlight the efficiency of the flexi-

ble on-chip memory architecture more clearly as the proposed de-

sign achieves a better performance for deeper networks. Again,

our developed optimization tool is used to generate the parameters

of both accelerators for the VGGNet-E on VU9P FPGA in 16-bit

fixed-point. The generated parameters are used to customize the

parameterized HLS implementations of both accelerators. Exper-

iment results show that, for the 16-bit fixed-point data type, the

accelerator based on the proposed architecture can reduce the fea-

ture map traffic by nearly 50% for VGGNet-E and reduce the us-

age of BRAMs by 23%, compared with the baseline. This shows

the capability of the proposed approach for deep networks with

compact data types. The accelerators based on the approach and

the baseline schemes can reach a throughput of 5,342,237 cy-

cles/image and 5,136,768 cycles/image, respectively.

Fig. 6: Normalized off-chip feature map traffic in FP32

6 RELATED WORK
There is an increasing amount of work focusing on accelerat-

ing DCNNs on FPGAs [2,4-7]. However, all of them suffer from

the static bank assignment problem, and the accelerator cannot

effectively reuse feature maps for the next layer CNN processing.

For example, the most recent work on the FPGA-based CNN ac-

celeration [2] proposes a solution for the under-utilization prob-

lem of DSP slices (the arithmetic units in the CLP); whereas the

proposed flexible memory architecture focuses on off-chip feature

map traffic reduction, thus complementing [2]. Specifically, the

solution in [2] tackles the under-utilization problem by partition-

ing FPGA resources among multiple accelerators (multi-CLP)

with different smaller sizes. In case that the same CLP is used to

process adjacent CNN layers in the multi-CLP approach, the flex-

ible memory architecture can be used in each accelerator of the

multi-CLP approach to reduce the off-chip feature map traffic as

well as the overall off-chip feature map traffic generated by all the

CLPs. In another recent example [4], a flexible buffering scheme

is presented for the CLP to balance the off-chip bandwidth be-

tween feature maps and weights by choosing an optimal batch size

[4]. However, the accelerator still suffers from the static bank as-

signment and the proposed architecture can be used to reuse fea-

ture maps. Another example is the fused-CNN accelerator dis-

cussed previously [9]. Other earlier works such as [11, 12] focus

on the two-dimensional convolution engine, including the order of

fetching data for processing and the data caching, but not for 3D

convolution structures in deep networks.

7 CONCLUSION
With the objective of utilizing reusable data during the compu-

tational transition between CNN layers, we propose a flexible on-

chip memory architecture with a bank management scheme. The

key motivation behind our design is to address the static assign-

ment of memory banks and more efficient utilization of large on-

chip memories in modern FPGAs. In the proposed architecture,

each individual memory bank can set its status dynamically dur-

ing CNN processing and computational transition to the next lay-

er. Experiment results show that using the proposed architecture

can reduce the feature map traffic by 40% for a deep network such

as ResNet-152 in 32-bit floating point on the Xilinx VU13P

FPGAs, and reduce the off-chip feature map traffic by 50% in a

more compact data type on the Xilinx VU9P FPGA.

Acknowledgment: This research was supported, in part, by the

National Science Foundation grants #1619456 and #1619472.

REFERENCES
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2011. Deep Residu-

al Learning for Image Recognition. In the IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2016.

[2] Y. Shen, M. Ferdman, and P. Milder. 2017. Maximizing CNN Accelerator

Efficiency Through Resource Partitioning. (ISCA ’17).

[3] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy

Huang, Jason Gee Hock Ong, Yeong Tat Liew, Krishnan Srivatsan, Duncan

Moss, Suchit Subhaschandra, and Guy Boudoukh. 2017. Can FPGAs Beat

GPUs in Accelerating Next-Generation Deep Neural Networks?. In Proceed-

ings of the 25th ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA ’17).

[4] Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Escher: A CNN

Accelerator with Flexible Buffering to Minimize Off-Chip Transfer. In Pro-

ceedings of the 25th IEEE International Symposium on Field-Programmable

Custom Computing Machines (FCCM ’17).

[5] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jin-

cheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong Yang.

2016. Going Deeper with Embedded FPGA Platform for Convolutional Neural

Network. In Proceedings of the 24th ACM/SIGDA International Symposium on

Field- Programmable Gate Arrays (FPGA ’16).

[6] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason

Cong. 2015. Optimizing FPGA-based Accelerator Design for Deep Convolu-

tional Neural Networks. In Proceedings of the 23rd ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays (FPGA ’15).

[7] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, and Xiaowei Li.

2016. C-brain: A Deep Learning Accelerator That Tames the Diversity of

CNNs Through Adaptive Data-level Parallelization. In Proceedings of the 53rd

Annual Design Automation Conference (DAC ’16).

[8] UltraScale Architecture and Product Data Sheet: Overview, DS890 (v2.11)

February 15, 2017.

[9] M. Alwani, H. Chen, M. Ferdman, and P. Milder. 2016. Fused-layer CNN ac-

celerators. In Proceedings of the 49th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO ’16).

[10] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss:

An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neu-

ral Networks. IEEE Journal of Solid-State Circuits 52, 1 (Jan 2017).

[11] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Ca-

dambi. 2010. A Dynamically Configurable Coprocessor for Convolutional

Neural Networks. In Proceedings of the 37th Annual International Symposium

on Computer Architecture (ISCA ’10).

[12] Maurice Peemen, Arnaud AA Setio, Bart Mesman, and Henk Corporaal. 2013.

Memory-centric accelerator design for Convolutional Neural Networks. In

Proceedings of the 31st IEEE International Conference on Computer Design

(ICCD ’13).

0

20

40

60

80

100

VGGNet-E ResNet-34 ResNet-50 ResNet-152

N
o

rm
al

iz
e

d
 t

ra
ff

ic

(%
)

Baseline Flexible

